

Florida Department of Transportation

AFD40(2) Monthly Web Meeting: FDOT APT Update

Jamie Greene

May 2014

Topics

- Current APT research (2013 to present)
 - Impact of wide-base tires on pavement damage
 - Fiber reinforced polymer bridge deck
 - Benefit of using a prime coat
 - 4.75 mm mixture as a preservation treatment
 - Florida's concrete test road
 - PG 76-22 asphalt rubber binder
 - Sanghyun Chun presenter

Wide-Base Tires

- TPF-5(197), The Impact of Wide-Base Tires on Pavement A National Study
- Objective: Quantify the impact of WBT on pavement damage utilizing advanced theoretical modeling and validate results using full-scale testing
- Scope:
 - University of Illinois, Principal Investigator
 - Contact stress measurements, CSIR
 - Instrumented pavement sections
 - **✓** FDOT
 - ✓ UC-Davis
 - ✓ Ohio University
 - Modeling effort
 - ✓ University of Illinois
 - ✓ Delft University of Technology

Test Pit Instrumented Section

Test Track Instrumented Section

Longitudinal & Transverse Surface Gauge (Offset from Tire)

HVS Test Matrix

180 Combinations

					— Cor	mbinations
Tire Type	Inflation Pressure (psi)		Tir	e Loading (ki		
NGWB and Dual	80	6	8	10	14	18
NGWB and Dual	100	6	8	10	14	18
NGWB and Dual	110	6	8	10	14	18
NGWB and Dual	125	6	8	10	14	18
Dual Only	60/110	6	8	10	14	18
Dual Only	80/110	6	8	10	14	18

Tests at 25°C, 40°C, and 55°C

Testing completed...

Final report should be published later this year

FRP Bridge Deck

- Objective: Investigate alternative to open grid steel decks
 - Must have a solid riding surface, weigh less than 25
 lb/ft2, have a low profile (5 in depth), and low noise
- Background: Florida has the largest inventory of movable bridges in the US, most of which use open grid steel decks
 - High noise & vibration levels, costly maintenance

FRP Bridge Deck

FRP Bridge Deck

- Applied more than 300,000 passes
- Significant system deflection (> 0.5 inches) in center of deck
- Surface cracks initiated after
 5000 passes
- No catastrophic failures of joints or panels

Structures Research
Group interested in
testing new design this
fall/winter

Prime Coat Benefit

- Objective: Investigate structural benefit of prime coat
- Scope: Construct and instrument three sections with different base surface preparations: One with standard prime coat, one with a trackless tack coat, and one with no surface preparation.

Longitudinal Strain at AC Bottom

(Preliminary Data)

Strain in untreated section increases at elevated temperatures

Transverse Strain at AC Surface

(Preliminary Data)

Strain in untreated section increases at elevated temperatures

4.75 mm Preservation Treatment

• **Objective:** Study use of 4.75 mm mixture for preservation treatment on low-volume roadways and overbuild layer

4.75 mm W/ 1 0 07 22	4.75
4.75-mm mixture w/ PG 67-22	4.75-mm
1.5-inch SP-12.5 w/ PG 76-22	1.5-inch
1.5-inch SP-12.5 w/ PG 67-22	1.5-inch
10.5-inch limerock base	10.5-inc
12-inch granular subbase	12-inch

4.75-mm w/ PG 67-22 4.75-mm w/ PG 76-22

4.75-11111 W/ PG 70-22		
4.75-mm mixture w/ PG 76-22		
1.5-inch SP-12.5 w/ PG 76-22		
1.5-inch SP-12.5 w/ PG 67-22		
10.5-inch limerock base		
12-inch granular subbase		

4.75-mm thickness ranges from ½ to 1 inch

Florida's Concrete Test Road

- Located in Clay County, SR200/US 301
- Route serves as a significant truck connection between northeast and southwest Florida
- Existing 4-lane rural arterial with a 40 ft median, 31% trucks, design speed of 70 mph
- Will consist of 2.5 miles of two-lane roadway adjacent to existing northbound lanes
- A series of concrete test sections (52 total) including replicates

Florida's Concrete Test Road

- WIM installation at south end of test sections
- Dedicated weather station
- Northbound traffic will be diverted to parallel test road
- Existing northbound asphalt road will provide alternate traffic lanes during evaluation periods
- 2016, estimated construction cost \$26 million

US 301 Looking South

What Will We Learn?

- Structural test sections
 - Thickness, base types, recycled materials
 - 4,400 feet total (20 sections)
- Drainage test sections
 - Edge drains, joint sealant
 - 3,600 ft total (16 sections)
- MEPDG calibration test sections
 - Focus on cracking
 - 3,600 ft total (16 sections)

Pavement Structures

Current Work

- Phase III design plans almost complete
- Developing detailed laboratory test plan and long-term monitoring plan
- Designing instrumentation plan
 - Potential use of fiber optic strain gauges
 - Constructability of design
 - Upcoming test sections

Fiber Optic Strain Gauge Evaluation

 Advantages: Immune to electromagnetic interference (including lightning!), long lead lengths are not a problem, fewer DAQs are required

Florida Department of Transportation

PG76-22 ARB Study

Sanghyun Chun

Contents

- Introduction
- Accelerated Pavement Testing (APT)
- Laboratory Materials Testing
 - Binder Testing
 - Mixture Testing
- Summary

Introduction

Background

- 2001 APT evaluation of rutting resistance of a polymer modified PG76-22 asphalt binder
 - Traffic level D (10 to < 30 million ESALs) requires
 PG76-22 binder for final structural course
 - Traffic level E (≥ 30 million ESALs) requires PG76-22 binder for top two structural courses
 - Recommended for use at intersections or other facilities with slow moving and concentrated truck loads
- Deficient pavements due to rutting and cracking have steadily decreased over the last 10 years

Background

- Supply shortage and price increase of SBS polymer for asphalt industry
- Asphalt Rubber (AR) Binder may provide an alternative modifier to SBS polymer and create competition to lower cost

Background

- 1988 Florida Legislature
 - Florida Statute 336.044
 - Directed FDOT to research and if feasible, expand use of waste materials particularly GTR in construction
- 1994 Asphalt rubber binder (ARB) specifications developed as a standard practice
 - ARB-5, ARB-12 and ARB-20
 - FDOT usage since 1994: Over 7 million tires
 - Good cracking performance: Issues with settlement

Alternatives to SBS PMA Binder

- PG76-22 AR Binders
 - 2014 FDOT Standard Specification
 - GTR and Hybrid (GTR + SBS polymer)
- Potential way to address supply shortage and cost of SBS polymer and increase the use of recycled tire rubber

Objectives and Scope

- Evaluate asphalt rubber binder as an alternative to polymer modified asphalt binder for use in structural courses that requires a PG76-22 grade
- Performance evaluation was conducted for both rutting and cracking using APT and different laboratory tests

Materials Evaluated

Mixture Type	Binder Producer	Binder Type	Mixture ID
12.5 mm Fine	Α	PG76-22 SBS PMA	Control
12.5 mm Fine	Α	ARB-5	ARB-5
12.5 mm Fine	В	PG76-22 Hybrid	Hybrid B
12.5 mm Fine	Α	PG76-22 Hybrid	Hybrid A
12.5 mm Fine	С	PG76-22 GTR	GTR C
12.5 mm Fine	Α	PG76-22 GTR	GTR A

Accelerated Pavement Testing

Florida's APT Program

- Initiated in 2000
- Housed at the State Materials Office in Gainesville, FL
- Test site consists of eight 12 feet linear tracks
 - Originally 150 feet long
 - Seven tracks extended additional 300 feet in 2001
- Two additional tracks include water table control
- Loading performed using a Heavy Vehicle Simulator (HVS)

Florida's APT Program

Experimental Design

PG76-22 PMA (SBS)

1.5-inch SP-12.5

1.5-inch SP-12.5

1-inch existing SP-12.5

10.5-inch limerock base

12-inch granular subbase

ARB-5

1.5-inch SP-12.5

1.5-inch SP-12.5

1-inch existing SP-12.5

10.5-inch limerock base

12-inch granular subbase

Blend of GTR and Polymer PG76-22 ARB (Hybrid)

1.5-inch SP-12.5

1.5-inch SP-12.5

1-inch existing SP-12.5

10.5-inch limerock base

12-inch granular subbase

PG76-22 ARB (GTR)

1.5-inch SP-12.5

1.5-inch SP-12.5

1-inch existing SP-12.5

10.5-inch limerock base

12-inch granular subbase

(two binder suppliers) (two binder suppliers)

Rut Evaluation

- Heavy Vehicle Simulator (HVS)
- 9-kip wheel load (Super Single)
- 4 inches of wander
- Test temperature of 50 °C

HVS Test Sequence

APT Rut Profiles

Mixture	APT Rut After 100,000 Passes (mm)	
PG76-22 SBS PMA	5.9	
ARB-5	6.6	
PG76-22 Hybrid B	3.9	
PG76-22 Hybrid A	5.1	
PG76-22 GTR C	3.6	
PG76-22 GTR A	4.4	
	·	

 Average rut depth of 3.6 – 6.6 mm (0.14 – 0.26 in) after 100,000 HVS passes

Laboratory Materials Testing

Binder Tests

- 2014 FDOT Standard Specification
- Separation
- Viscosity
- Dynamic Shear Rheometer (DSR)
- Multiple Stress Creep Recovery (MSCR)
- Bending Beam Rheometer (BBR)

Separation

Separation Difference

Viscosity

Rotational Viscosity

Dynamic Shear Rheometer (DSR)

Dynamic Shear Rheometer (DSR)

DSR Phase Angle δ

Multiple Stress Creep Recovery (MSCR)

MSCR % Recovery

MSCR Non-Recoverable Compliance Jnr

Bending Beam Rheometer (BBR)

Mixture Tests

- Volumetric Properties
- Asphalt Mixture Performance Tester (AMPT)
 - Dynamic Modulus
 - Flow Number
- Superpave Indirect Tension Test (IDT)
 - Resilient Modulus
 - Creep
 - Strength

Volumetric Properties

Mix Type	G _{mb}	G _{mm}	Air Voids (%)
12.5 mm PG76-22 SBS PMA	2.416	2.501	3.4
12.5 mm ARB-5	2.409	2.501	3.7
12.5 mm PG76-22 Hybrid B	2.415	2.506	3.7
12.5 mm PG76-22 Hybrid A	2.420	2.510	3.6
12.5 mm PG76-22 GTR C	2.415	2.502	3.5
12.5 mm PG76-22 GTR A	2.410	2.511	4.1

As-Built Gradations and Binder Content

Sieve Size	JMF	As-Built						
		12.5 mm PG76-22 SBS PMA	12.5 mm ARB-5	12.5 mm PG76-22 Hybrid B	12.5 mm PG76-22 Hybrid A	12.5 mm PG76-22 GTR C	12.5 mm PG76-22 GTR A	
3/4"	100	100	100	100	100	100	100	
1/2"	100	98	99	99	99	99	99	
3/8"	87	87	87	91	91	91	89	
#4	62	62	61	65	65	64	62	
#8	41	42	41	43	44	42	40	
#16	29	30	30	31	31	30	29	
#30	22	23	23	23	24	23	22	
#50	12	13	14	14	14	13	13	
#100	4	5	5	5	6	5	5	
#200	2	3	3	3	3	3	3	
%AC	5.1	5.0	5.0	5.0	4.8	5.0	4.6	

Asphalt Mixture Performance Tester (AMPT)

Dynamic Modulus

Asphalt Mixture Performance Tester (AMPT)

Flow Number

Superpave IDT

- M_R test: Stiffness
- Creep test: Rate of damage accumulation (Creep compliance rate)
- Strength test: Failure limits

$$ER = \frac{DCSE_{\underline{f}}}{DCSE_{min}} = \frac{f(\sigma_{\underline{t}}, S_{\underline{t}}) \times DCSE_{\underline{f}}}{m^{2.98} \times D_{1}}$$

Superpave IDT

Mixture Fracture Properties

Summary

Mixture	APT Rut After 100,000 Passes (mm)	Flow Number	Fracture Energy (KJ/m³)	Creep Rate (1/psi·sec)	Energy Ratio	Overall Rank	
						Rutting	Cracking
PG76-22 SBS PMA	5.9	72	2.8	2.8E-09	4.2	5	3
ARB-5	6.6	60	5.4	6.8E-09	4.5	6	4
PG76-22 Hybrid B	3.9	423	4.7	3.1E-09	6.6	1	1
PG76-22 Hybrid A	5.1	97	5.0	9.5E-09	2.6	3	5
PG76-22 GTR C	3.6	382	2.7	2.3E-09	5.0	2	2
PG76-22 GTR A	4.4	63	7.2	2.0E-08	2.5	4	6

Summary

- In general, all mixtures show good rutting performance indicated by average rut depth of 3.60 mm – 6.60 mm (0.14 in – 0.26 in) after 100,000 HVS passes
- Hybrid A and GTR A mixtures exhibit significantly higher creep rate which indicates a greater rate of damage accumulation and relatively worse cracking resistance

Overall, Hybrid B mixture had the best rutting and cracking performance

Summary

- Based on the results in this study, the performance of PG76-22 AR binders (Hybrid and GTR) appear to be comparable to that of PG76-22 PMA binder
- The use of PG76-22 AR Binders
 - One solution for supply shortage of SBS polymer
 - Increase in use of recycled tire rubber
 - Comparable performance with PMA binder

Steps to Implementation

- FDOT research on PG76-22 binders with asphalt rubber
 - Contracted university research
 - In-house HVS study
 - NCAT test sections
- FDOT Standard Specifications for Road and Bridge Construction Section 916 (2014): PG76-22 (ARB)
 - Separation and MSCR test requirements
 - Minimum 7.0% GTR by weight of asphalt binder
 - Polymer modification is optional

Steps to Implementation

PG76-22 ARB Test Sections

County	Route	Location	Mix Type	Tonnage Placed	Date Constructed
Hernando	US-19	SR-55 (US-19) from County Line Road to Toucan Trail	FC-5	452	06/2012
Jefferson	US-19/27 (SR-20)	SR-20 (US-19/27) from West of SR-57 (US-19) to West of J.C. Lee Road	SP-12.5	508	01/2013
Leon	SR-20	SR-20 Blountstown Highway from Ochlocknee River Bridge to SR-263 Capital Circle	SP-12.5	800	05/2013
Palm Beach	SR-704	SR-704 Okeechobee Boulevard from East of Military to East of Congress	SP-12.5	448	05/2013

Thank You