Using Accelerated Pavement Testing to Evaluate Permeable Interlocking Concrete Pavement Performance

Rongzong Wu, David Jones, Hui Li and John Harvey University of California Pavement Research Center

Prepared for the AFD40(2) Monthly Webinar May, 14th, 2015

Outline

- Overview of APT Program at UCPRC
- Introduction
- Design Method
- Section Design
- Section Construction
- APT Testing
- Test Results
- Findings

Program Overview – Major Milestones

- 1993: CAL/APT program established
- 1995: two HVS Mk3s delivered
- 2009: new UCPRC facility opened at Davis, CA
- 2011: new HVS Mk6 delivered
- 2012: 3 HVSs operating
- 2013: HVS-1 retired
- 2014: First test with extension

Program Overview – Google Earth View

Ę

Program Overview – Past Tests

Since program start:

- □ 22 projects
 - Asphalt concrete
 - Portland cement concrete
 - Interlocking concrete pavements
 - Bridge deck
- \square 160 test sections
- 8 different test locations
- >85 million load repetitions
- \Box >4.3 billion ESALs

Program Overview - Current Testing 1/2

Phase 2 FDR test (soaked base)

- □ 12/2014~6/2015
- □ Soak section with a dam for one week
- Dripping water to the FDR layer through holes during tests
- □ Temperature controlled at 30C
- Looking at rutting performance and fatigue cracking

Program Overview - Upcoming Projects

 FDR-PC crack mitigation
 Ultra-thin whitetopping
 High RAP (binder replacement)

Outline

- Overview of APT Program at UCPRC
- Introduction
- Design Method
- Section Design
- Section Construction
- APT Testing
- Test Results
- Findings

Introduction – Permeable Interlocking Concrete Pavement (PICP)

Background

- Want to use PICP with heavy traffic
- **□** Funded by industry

Objectives

- Compare performance of permeable pavement under dry and wet subgrade conditions
- Validate mechanistic designs
- Develop mechanistic based catalogue

Design Method

Distress

- □ Unbound layer rutting
- Methodology
 - □ Shear Stress Ratio (SSR)
 - \Box SSR < 0.3, low risk of rutting;
 - \Box 0.3 \leq SSR \leq 0.7, medium risk of rutting;
 - \Box SSR > 0.7, high risk of rutting.
- Needed Inputs
 - Unbound layer stiffness and strength

Section Design – Standard Structure Profile

- Surface (interlocking concrete paver, 80 mm thick)
- Bedding layer (ASTM #8 aggregate, 50 mm thick)
- Base layer (ASTM #57 aggregate, 100 mm thick)
- Subbase layer (ASTM #2 aggregate, with varying thickness)
- Subgrade soil (compacted as the client requested)

Section Design – Getting Stiffness

- Find existing PICP
- Conduct surface deflection testing using RSD
- Back-calculate subbase stiffness

Section Design – Deflection Testing Setup

Section Design – Deflection Testing Results

Section Design – Back-Calculated Stiffness

		Layer Stiffness at Different Wheel Load Levels (MPa)							
Measureme	nt Location	Paver +	Bedding	Aggr Base/S	egate oubbase	Subgrade			
Site	Location	Low	High	Low	High	Low	High		
M - 4 ' D 1-	Centerline	23	41	89	100	94	93		
Matsul Park	Wheelpath	18	35	50	56	71	75		
Target	Centerline	240	227	38	35	47	40		
	Wheelpath	136	205	33	23	30	26		
Yolo Credit	Centerline	514	618	40	36	43	45		
Union	Wheelpath	264	220	25	26	37	36		
Average		238	265	45	43	51	49		

Section Design – Stiffness Used

Layer	Layer No. in Design	Design Layer Stiffness (MPa)
Surface		
Bedding Layer	1	500
Base Layer		
Subbase Layer	2	40
Subgrade	3	40

Section Design – Strength Inputs

Subbase layer

 \Box c = 0, $\phi = 45^{\circ}$ based on literature review

Subgrade

- □ Silty clay
- Cohesion of 15 kPa, with a friction angle of 25° for dry condition and 0° for wet condition based on literature review

Section Design – The subbase thickness

Subbase	Shear	Calcu		
Thickness	Stress			As-
Type	Ratio	Dry	Wet	Built
	(SSR)			
Shallow	0.8	450	650	460
Medium	0.5	800	950	660
Deep	0.2	1,350	1,450	960

Section Design – The Structure

Davis • Berkeley CENTER

Section Construction -1/2

Section Construction -2/2

Davis • Berkeley CENTER

Section Construction – Cool Video

Good luck>

Section Construction – Instrumentation 1/2

- Aggregate size limited options
- Pressure cell
 - **Top of subgrade**
 - □ Top of base

Deformation indicators

- Top of subgrade
- **Top of base**
- Profile
- Road surface deflectometer
- Water level
 - Manual readings; and
 - Automatic readings

Section Construction – Instrumentation 2/2

- PermanentDeformationHoles
 - Base set on top of
 SG and #2
 subbase
 - Record base distance to surface regularly

APT Testing – Loading Programs

Stage	Starting Repetition	Ending Repetition	HVS Wheel Load (kN)
1	1	100,000	25
2	100,001	200,000	40
3	200,001	340,000	60
4	340,001	till completion	80

APT Testing – Factorials

Three conditions

- **D**ry
- Wet: water table maintained at the top of the #2 rock subbase
- Drained
 - Conducted right after the wet test
 - No standing water, all drained

Three subbase thicknesses

- □ 460, 660 and 960 mm
- Tested at the same time
- □ With the extender, HVS-3 covers 13m

Failure criteria

□ 25 mm of surface rut

APT Testing – Wet Testing

APT Test Results – Visual Assessment

APT Test Results – Total Surface Rut: Dry

APT Test Results – Total Surface Rut: Wet

APT Test Results – Total Surface Rut: 460mm

APT Test Results – Total Surface Rut: 660mm

APT Test Results – Total Surface Rut: 960mm

APT Test Results – Downward Rut: Dry@ 960mm

APT Test Results – Downward Rut: Dry@ 660mm

APT Test Results – Downward Rut: Dry@ 460mm

APT Test Results – Downward Rut: Wet@960mm

APT Test Results – Downward Rut: Wet@660mm

APT Test Results – Downward Rut: Wet@460mm

APT Test Findings – Overall

- Significant difference in wet and dry testing
 - Limited testing under drained condition shows performance trend similar to dry condition

APT Test Findings – Dry Test

460 mm Subsection

- Rutting occurred in both the subbase (10 mm rut) and subgrade (13 mm rut)
- 650 mm and 950 mm Subsections
 - **Rutting occurred mostly in the subbase**

APT Test Findings – Wet Test

- Rutting occurred in both the subbase and the subgrade on all subsections
- Rutting in the subbase consistent across all three sections (~25 mm).
- Rutting in the subgrade differed between sections
 - Thicker subbase thickness leads to less subgrade rut

APT Testing Conclusions

Effect of subbase thickness

- □ Influence rutting in the subgrade
- Does not influence rutting in the subbase itself

Therefore

- Need to have enough thickness to reduce rutting in subgrade
- Need to have quality aggregate and good construction to reduce subbase rutting

APT Testing Recommendations -Design Tool

s		Layer	Maistuna Canditian	Thiskness (mrs)	Chiffmann (LTD-)	Poisson's Patie	a (laDa)	((2)		
s			Moisture Condition	1 mc kness (mm)	Stiffness (MPa) *	Poisson's Katio	c (kPa)	φ()		
s		Surface (80 mm concrete paver	Wet	230	87	0.35	-	-		
	Structure &	mm #57 hase)	Day		110	0.25				
	M aterials	init in the states	Dry		110	0.55	-			
		Subbase (ASTM #2)	Wet	450	/3	0.35	0	30		
+			Dry Wat		37	0.55	0	45		
		Subgrade (Clay)	Dry		60	0.35	15	25		
	Climate	Number of Days in a Year When the Subbase has Standing Water (Wet Days) ² 50	¹ The wet stiffness to dr respectively. ² Seasons when the subl	The wet stiffness to dry stiffness ratio can be assumed as 0.8, 0.6 and 0.6 for surface, subbase abd subgrade layers, sepectively. Seasons when the subbase has standing water.						
					Axle-Load	L ifetime Repetition			Lifet	
		I rank Volume Calculation	Axle Type	Axle Load (kN)	Distribution (%)	Wet Season ²	Dry Season	Total	ESALs	L SAL
		AADT (two-way)		10	3.25	9.959	62,740	72,699	18	(AI III)
		5,700	1	20	5.97	18,286	115,200	133,486	521	
		Percent Trucks, T	1	30	5.83	17,850	112,456	130,307	2,577	2,577 6,191 1,023 9,805 1,054
ut		10.0%]	40	4.43	13,568	85,481	99,050	6,191	
		Direction Distribution Factor, D	Single	50	3.23	9,896	62,345	72,241	11,023	
		0.5		60	2.80	8,574	54,019	62,593	19,805	
		Lane Distribution Factor, L		70	3.13	9,594	60,443	70,037	41,054	
		0.8		80	2.40	7,363	46,388	53,751	53,751 30,327	
		Annual Growth Rate, r		90	0.85	2,594	16,340	18,933		
	Traffic	3.0%	+	100	0.15	445	2,804	3,249	7,931	
		Design Life (years), 1 20		120	0.03	94	394	088	3,485	0.5
		Traffic Safety Factor, TSF		20	1.59	4007	20.799	25.675	3,350	0.0
		10		40	5.79	4,007	111 727	129.461	17	
		Truck Traffic Volume, V	1	60	6.76	20,729	130 591	151 210	5 095	85
		2.236.814	Tandem	80	4.48	13720	86.437	100.158	12,520	
				100	3.42	10.472	65 971	76.443	23 320	
				120	3.86	11,815	74 432	86 247	54 578	28 28
		$V = 365 \times AADT \times T \times D \times L \times (1+r)^{W^2} \times Y \times TSF$		140	4.12	12,630	79,569	92 199	108.091	
				160	1.94	5946	37,460	43,406	86.813	
				180	0.29	900	5,670	6,570	21.048	
				200	0.05	154	973	1,128	5,506	
	Layer	Moisture Condition	Shift Factor	Rut Depth by Layer (mm)	Expected Total Rut Depth (mm)	Allowab le Rut Depth (mm)	Satisfactory ?			
		Surface (80 mm concrete paver	Wet	1.00	1.1					
		plus 50 mm #8 bedding and 100								
Dutcome Rut Depth	mm #57 base)	Dry Wet Dry Wat	1.00	3.3	65.3	25.0	A.T			
	Subbase (ASTM #2)		1.23	15.0			IN			
			1.10	25.0						
	Subgrade (Clay)	Dry	1.10	12.0						

http://www.ucprc.ucdavis.edu

