Technical Presentation:

Follow up on HVS testing of Roller Compacted Concrete and Ultra-thin reinforced concrete test sections

Louw du Plessis 12 Febuary 2015

Objectives

UTRCP

- Previous round of HVS testing done 2010/11
- Light structure Design traffic < 1 million E80s
- Cycles to failure varied between 2.3m (in the dry state) to 360 000 (in the wet state)
- Weak support (initial deflections = 0.6mm)
 - (increased to over 1.8mm during the wet cycles)
 - Basic 2 layer system: 50mm UTRCP on top of 150mm Imported base on top of a prepared roadbed
- Objectives of this series of testing
- Determine if the UTRCP system can be improved and used for higher order roads such as collector and provincial roads (1-3million E80s, or even possible 3-10m)

UTRCP: Structural Design evaluation

- Due to serious early failures on certain projects the CSIR investigated mechanistically why certain sections had premature failures
- Used CNCPave to evaluate the stress conditions under a well supported UTRCP structure
- Test the stresses against MOR
- Analyze the results

History: The Roodekrans Experiment (2007)

Roodekrans experimental section layout Sections 1 to 7

Section	1	2	3	4	5	6	7
Surfacing	75 mm	75 mm	75 mm SFRC	50 mm CRCP	75 mm CRCP	100 mm CRCP	100 mm butt jointed concrete
Leveling layer	SFRC	SFRC	25 mm ETB	50 mm ETB	25 mm ETB		
Support	140 mm foam concrete	125 mm stabilized subbase					
			In situ	compacted	gravel		

 Table 1.
 Summary of selected in place material properties for the various test sections.

		Layer Thickness and Material type							
LAYER	MATERIAL PROPERTY	75 mm SFRC, foam; stab	75 mm SFRC, ETB	50 mm; 75 mm CRCP, ETB	100 mm CRCP, ETB	100 mm JCP, stab	100 mm JCP, AC	140 mm JCP; dowel	
Concrete	Compressive strength 28 days [MPa]	22.5 to 28	28	31 to 42	32 to 39.5	32 to 37	34 to 37	34 to 37	
	Average UCS [kPa]		1 950						
Base /	PI	Non Plastic							
Subbase	Average Stiffness [MPa]	750							
	Average CBR [%]	75							
	PI	6							
	Grading Modulus	2.5							
Subgrade	Density [kg/m ³]	2 143							
	Average Stiffness [MPa]	180							
	Classification	A1 - a(0) and A2 - 4(0)							

Table 2. Summarized deflection response data for the various test sections.

RESPONSE PARAMETER	75 mm SFRC, foam; stab	75 mm SFRC, ETB	50 mm; 75 mm CRCP, ETB	100 mm CRCP, ETB	100 mm JCP, stab	100 mm JCP, AC	140 mm JCP; dowel
Average surface deflection range (FWD) [mm]		0.75	0.55 to 0.63	0.48	0.50	0.59	0.51 to 0.69

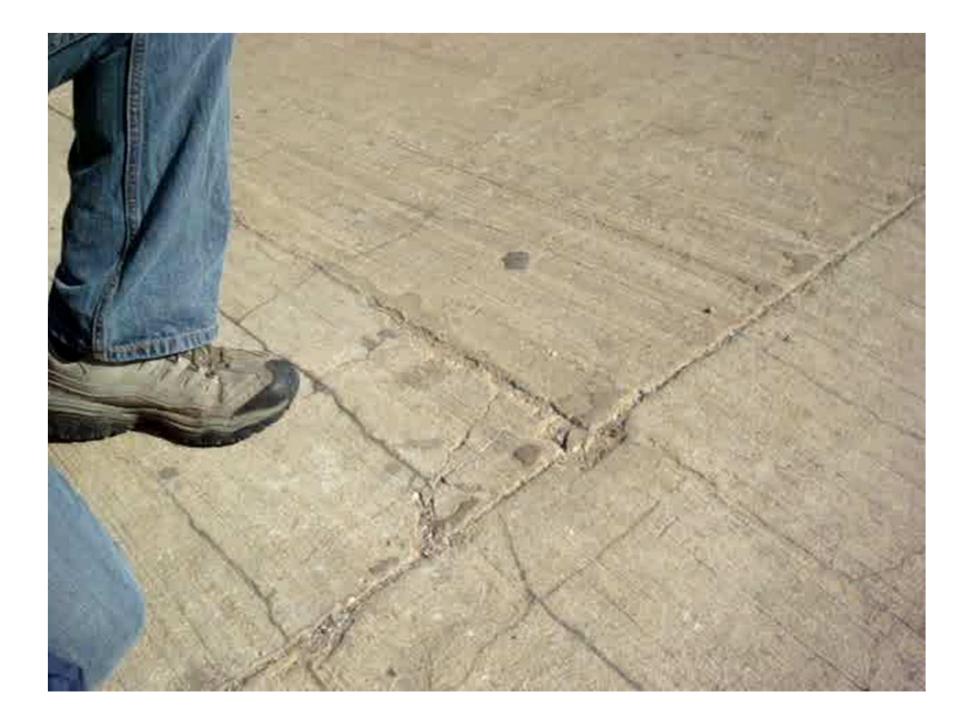
Mechanistic evaluation

Pavement structure

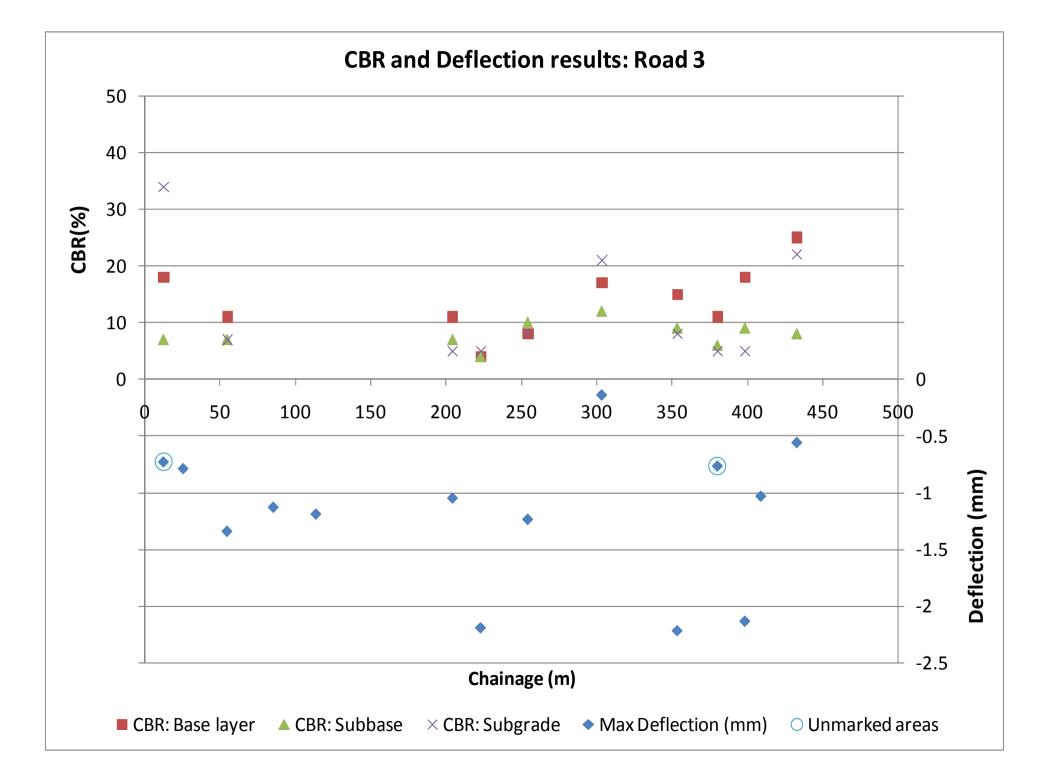
3 layers - concrete surfacing, stabilized base, subgrade Stiffness concrete 28 GPa Stiffness of base 1000 MPa Stiffness of subgrade support Between 140 MPa and 70 MPa Focus on tensile strain of the concrete Indicate potential for cracking

Mamelodi Investigation Example of early failures

Unde V VI



Slide 11 of



Summary of Ave deflections and CBR data

Road #	RSD Deflec	tions	DCP CBR derived results					
	(mm)	std	Base	std	Subbase	std	Subgrade	std
1	1.01	0.21	18.7	8.9	15.5	9.6	12.9	7.70
2	1.00	0.30	46.0	41.0	16.0	11.6	14.9	20.55
3	1.15	0.59	13.2	6.1	8.4	2.6	12.1	9.59
4	0.95	0.18	12.8	3.7	12.0	2.4	11.0	2.00
5	0.84	0.47	9.8	2.6	6.5	2.5	10.3	0.50
6	1.35	0.47	13.8	4.3	7.8	1.9	6.0	2.45
Ave	1.05	0.37	19.02	11.08	11.0	5.11	11.2	7.13

Compare to Roodekrans: < 0.6mm Compare to Roodekrans: CBR = 75

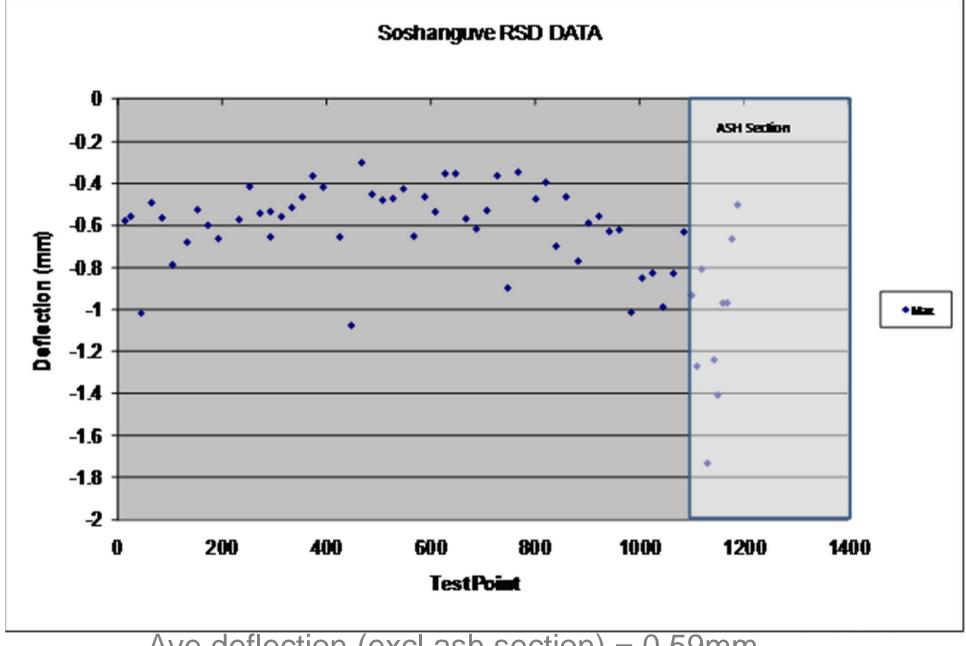
our future through science

PROJECT 2 - SOSHANGUVE BUS ROUTE

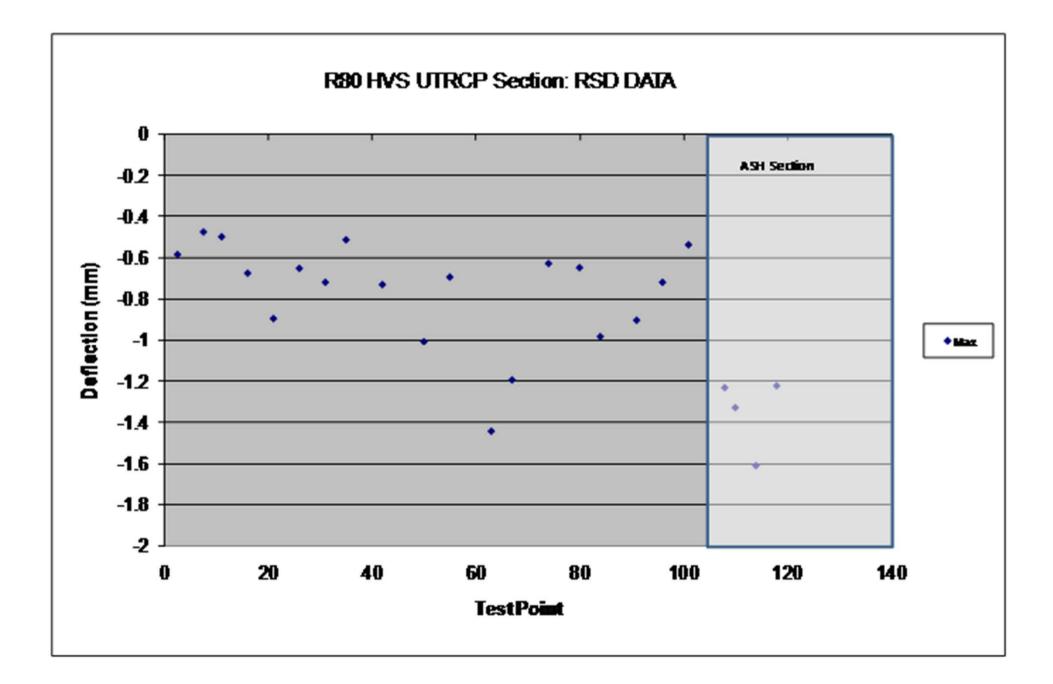
Construction process

PROJECT 1 - SOSHANGUVE BUS ROUTE

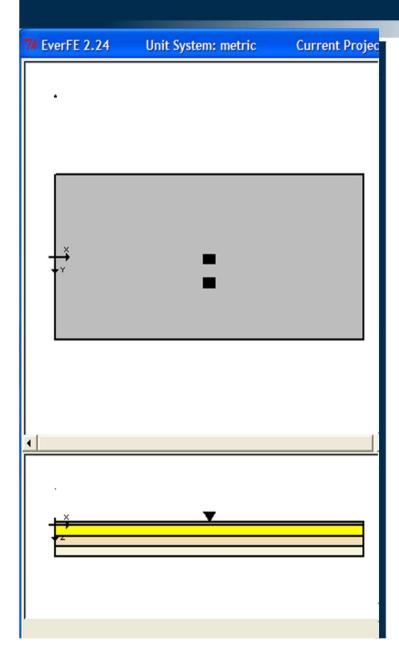
Earthworks and shaping of in-situ layer


Competed UTRCP road with side drain

PROJECT - SOSHANGUVE BUS ROUTE



Completed road

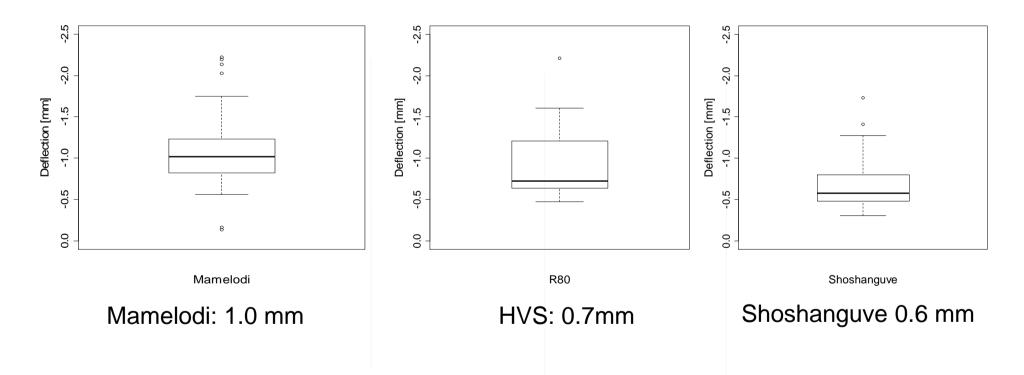

Comparison: Soshanguve & R80 HVS UTRCP sites

Ave deflection (excl ash section) = 0.59mm

Analysis

- Analysis performed using EverFE 2.24 and cncPave 404,
- Assumed material properties 30-40 MPa concrete:
 - MOR = $4.0 \text{ MPa}, f_t = 2.0 \text{ MPa}$
 - E = 30 GPa, Poisson's ratio 0.2
 - Coef. of thermal expansion: 12 10⁻⁶ /°C
 - Pavement surface temperature : 40 °C
 - Temperature differential: 4 °C

Modulus of Rupture (MOR)



- MOR = Flexural strength of concrete
- Because it's a specialised test the compressive strength are used (f_c)
 MOR = k√f_c
 - K = spring stiffness (MPa/mm): stress on SG/deflection ≈ 0.74
- Thus for a 30MPa concrete MOR = 4 MPa

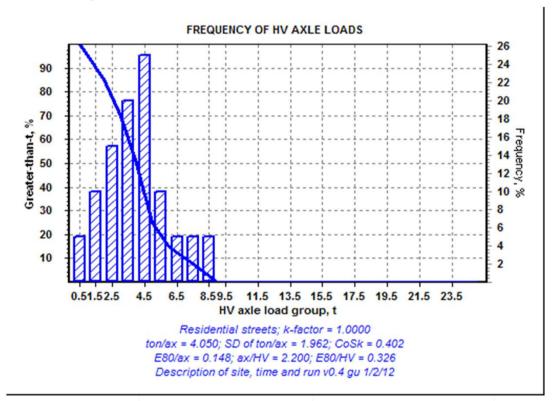
SG is modelled as a dense liquid (winkler spring) - Westergaard 1926 -

Deflection survey: Average Deflections

Matching measured deflections Mamelodi

Layer	Thickness	Modulus [MPa]	Poisson's ratio
Concrete slab	50	30 000	0.2
Granular	150	70	0.35
Granular	150	60	0.35
Granular	150	50	0.35
Subgrade	∞	varied	N/A

Subgrade modulus	Spring stiffness (k)	Deflection	Maximum tensile stress
[MPa]	[MPa/mm]	[mm]	[MPa]
50	0.258	0.659	7.62
40	0.206	0.696	7.68
20	0.103	0.859	7.90
10	0.052	1.13	8.17
5	0.026	1.58	8.46



Comparing stresses at different sections

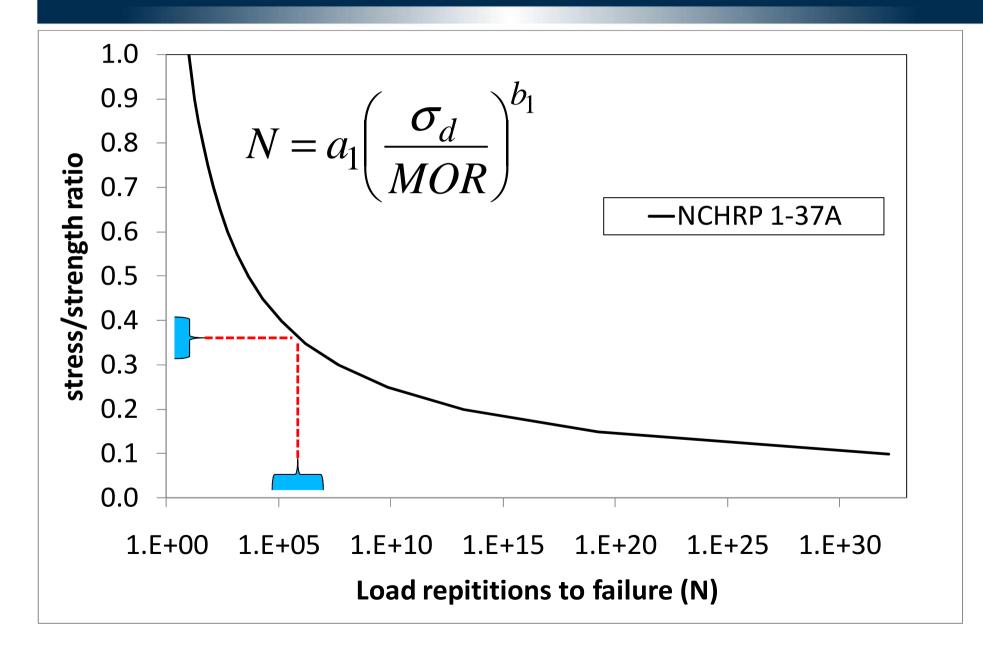
cncPave Analysis of the Mamelodi structure

Loading according to cncPave Urban load Spectra

Pavement Model as above with a SG moduli of 15 Mpa (to get to the ave surface deflection of 1mm with a 80kN load)

cncPave Analysis of the Mamelodi structure

cncPave decision criteria UTRCP


Decision variable	Good	Acceptable	Excessive	
% shattered concrete	below 0.2 %	0.2 % to 0.5 %	over 0.5 %	
% pumping	below 2 %	2 % to 5 %	over 5 %	
Crack spacing	0.3 m - 0.5 m	0.2 m to 0.7 m	below 0.2 m or over 0.7 m	

The results from the analysis indicate:

- There is a 50% probability that the surface area with shattered concrete will be excessive after 7 years, and
- a 80% probability that shattering will be excessive after 10 years.
- Analysis in agreement with what was observed: an unacceptably short life for a concrete pavement, which are typically designed to last past 20 years.

Design approach: Transfer function of the new American Mechanistic Empirical Pavement Design Guide (MEPG 2004)

Latest testing on UTRCP

- CSIR has tested an improved version of the original 50 mm UTRCP with extra steel, additional thickness and strengthened support with success
 - Design traffic 3–10 million standards 80 kN axle loads
 - Suitable for medium traffic provincial roads

Design Traffic	ES 10: 3 - 10 I	nillion F80s	ES 1: 0.3 - 1million E80s			
Ref 193 m		Ref 289	Ref 193 mesh (200x200			
(200mm x	200mm X 5.6mm diameter)	(100mm x 200mm x	5.6mm diameter)	x 5.6mm dia)		
3.5m -						
	/			\rightarrow		
		10	0m	í l		
75mm		UTRCP (30)MPa)			
150mm	C3 (parent G4) (1.5 - 3 MPa, 97% MOD AASHTO) G4 (min CBR 80, 98% MOD AASHTO)					
150mm	C4 (Parent G6) (UCS 0.75 - 1.5	MPa, 95% MOD AASHTO)	G6 (min CBR 25, 95% MOD AASHTO)			
150mm	G6 (min CBR 25, 95% MOD AASHTO)					
	G9 Roadbed prep 93% MOD AASHTO					

have a second second	
2 - The design a single	
HYSO5	
SECTION: 472A4 DOTE: 6 MAY 2014 2,592,842	
CRACKS : ALL OVER SECTION WET/DRY : WET	
POINTS :0-16	
TIME : 10HOO LOOD = 100 KN	
POINT : YELLOW CHALK	
SECTION FAILED "AFTER CLEANING"	
0	all