

AFD40(2) Monthly Web Meeting – BASt Session

BASt member of MLS UserGroup

Research update, data handling and new measurement system

Bastian Wacker
Design and Structure of Pavements

Federal Highway Research Institute Bundesanstalt für Straßenwesen

Name: Bastian Wacker

• Education: civil engineer (Dipl.-Ing, Master of Engineering)

- at BASt since 02/2013
 - Section:

Design and Structure of Pavements

Research activities:

accelerated pavement testing, structure analysis and technical research supervision

Slide Nr. 2

May 11th 2017; Speaker: **bast**ian Wacker

May 11th 2017; Speaker: **bast**ian Wacker

- Testing facilities at BASt
 - Indoor asphalt pavement test track
 - Indoor concrete pavement test track
 - Test hall for different research studies
- duraBASt → from march 2017
 - demonstration
 - investigation (**U**ntersuchung)
 - reference
 - area of BASt

May 11th 2017; Speaker: bastian Wacker

- Loading with Bogie including loading wheels
 - Wheel load 40 to 75 kN (8,99-16,86 kip)
 - chosen standard operation with
 50 kN (11,24 kip) (equivalent 10 to-Axle)
- Completion of loading wheels
 - dual or single
- Testing length
 - **3,50 m** (11,48 Foot US)
- Speed
 - up to 22 km/h (13,67 mph)= 6000 passes/h

© Pavetesting - MLS66

Agenda

- Research update (approx. 10min.)
- Future data handling (approx. 20min)
 - Outdoor test facility duraBASt
- New measurement system on MLS30 (approx. 15min)
- Time for discussion and questions (approx. 10min)

May 11th 2017; Speaker: bastian Wacker

May 11th 2017; Speaker: bastian Wacker

Slide Nr. 7

- Focus on non-destructive test methods
 - embedded ultrasonic sensors
 - mobile ultrasonic sensors
 - GPR systems in combination with ultrasonic sensors
 - measurement system with twelve geophones
 - Shaker in combination with acceleration sensors

May 11th 2017; Speaker: bastian Wacker

May 11th 2017; Speaker: **bast**ian Wacker

- embedded ultrasonic sensors
 - evaluation of big data
 - temperature changes (even small) have a huge influence on test results
 - research still needed to evaluate asphalt properties

- mobile ultrasonic sensors
 - operation takes time
 - evaluation process takes time
 - big experiences necessary to operate and to evaluate measurements

May 11th 2017; Speaker: bastian Wacker

- backcalculation of FWD results
 - not very common in Germany
 - in combination with GPR the potential and acceptance of backcalculation raises
- reference point very important for correction
 - no change of bearing capacity
- temperature correction on 20°C

- deflection basin of one measurement point
 - correction to 20°C (68°F) and reference point

May 11th 2017; Speaker: bastian Wacker

unloaded

loaded
3,3 Mio. loading cycles

9.250 MPa

Goodness of fit: 97,8%

Asphalt: between 5.000 and 14.000 MPa increment 250 MPa SoB: between 50 and 400 MPa increment 25 MPa

UG: direct derivation $d_{1.800}$ (dynamic module)!

May 11th 2017; Speaker: bastian Wacker

• results of measured (calibrated) and calculated deflection basins

May 11th 2017; Speaker: **bast** ian Wacker

Calculated strain (back calculated system) on bottom of asphalt

May 11th 2017; Speaker: bastian Wacker

- next steps
 - evaluation of core results
 - stiffness and fatigue
 - use the data to residual service life
 - combine the results out of non-destructive test methods
 - find solutions to take the temperature into account (ultrasonic sensors)

Agenda

- Research update (around 10min.)
- Future data handling (around 20min)
 - Outdoor test facility duraBASt
- New measurement system on MLS30 (around 15min)
- Time for discussion and questions (around 10min)

May 11th 2017; Speaker: bastian Wacker

Future data handling

duraBASt – outdoor test area demonstration, investigation (**U**ntersuchung), **r**eference **a**rea

May 11th 2017; Speaker: **bast**ian Wacker

Future data handling

- for example:
 - DU-Z2a = demonstration and investigation (DU) central area (Z) no. 2 north part (a)

May 11th 2017; Speaker: bastian Wacker

Future data handling (44.32) east Construction & Loading direction **Test Section** DU-Z1_**SE5**-2017 16,00 DU-Z1a DU-Z1b 13,25 10,50 10,00 DU-Z2a DU-Z2b 5,00 2,50 10m 47,50 95,00 MLS30 west

May 11th 2017; Speaker: bastian Wacker

Slide Nr. 20

Future data handling

- Relevant information embedded in sensor name
 - type of sensor (T, C, S, M)
 - loading or investigation section (SEDa = SE1-SE6)
 - depth [cm]
 - position
 - K765 = coordinate system 76,5m
 - 187 = 1,87 [m] loading area
 - deviating from axis
 - no information behind position = axis of test section (SEDa = y-coordinate 13,25)
 - "I" or "r" in loading direction (SEDa = north to south)
 I225 = 2,25 [m] left of axis (SEDa = y-coordinate 15,50)

May 11th 2017; Speaker: bastian Wacker

May 11th 2017; Speaker: bastian Wacker

Future data handling

- duraBASt will be a dynamic research area
 - We have to know everything!
 - position (3D)
 - type of installation
 - ...
 - for example:
 - rebuild a constructed test section
 - build up on a constructed test section

https://www.innova-systems.co.uk/solidworks-architectural-construction-industry-bim/

Different persons at BASt are working on this topic

May 11th 2017; Speaker: bastian Wacker

Agenda

- Research update (around 10min.)
- Future data handling (around 20min)
 - Outdoor test facility duraBASt
- New measurement system on MLS30 (around 15min)
- Time for discussion and questions (around 10min)

May 11th 2017; Speaker: bastian Wacker

Inflated - not to scale

May 11th 2017; Speaker: bastian Wacker

Inflated - not to scale

May 11th 2017; Speaker: bastian Wacker

- Acceleration measurements on Bogie frame
 - position 1: Phone on top of Bogie frame
 - position 2: Phone in front of Bogie frame
 - position 3: Phone in the back of Bogie frame
 - position 4: Phone underneath Bogie frame
 - position 5: Phone in front of Bogie frame

z down

x down

not realized

z down

y down

May 11th 2017; Speaker: bastian Wacker

Slide Nr. 30

position 5

- Loading section (pos. 1)
 - measurement time (rectangle)
 - 0,34 s (0,07 0,41 s)
 - MLS30 speed
 - 6.000 mm/s
 - suitable measurement length
 - 2.000 mm

May 11th 2017; Speaker: bastian Wacker

- only two measurements on position 1 can be analyzed
 - third measurement data are not transmitted or
- 50% of measurement points (range)

$$-$$
 z 1-1 = 0,59 m/s²

$$-$$
 z 1-2 = 0,67 m/s²

$$z_1-3 = -$$

- median
- z 1-1 = 9,79 m/s² \rightarrow 0,02 m/s² diff. to 9,81 m/s⁻
- z_1-2 = 9,69 m/s² \rightarrow 0,12 m/s² diff. to 9,81 m/s²
- $z_1-3 = -$

May 11th 2017; Speaker: bastian Wacker

- evaluation of all items
 - average range = 0,62 m/s²
 for 50% of measurement points

$$z 1 = 0.63$$

$$z_4 = 0.50$$

$$x_2 = 0.74$$

$$y_5 = 0.49$$

median to acceleration of gravity

$$z 1 = 0.07$$

$$z_4 = 0.39$$

$$x_2 = 0.23$$

$$y_5 = 0.07$$

© TriDiCam

New measurement system on MLS30

- development of sensor mounting (feasibility study)
 - three mounting points
 - two sensors
 - one control unit

May 11th 2017; Speaker: bastian Wacker

- next steps
 - installation of measurement system until end of May 2017
 - test measurements June 2017
 - implementation into regular APT program
 - July, September, October 2017
 - evaluation until march 2018
 - search for the best parameter for test section assessment - e.g. angle
 - next webinar more detailed information about my PhD-project

May 11th 2017; Speaker: bastian Wacker

Thank you for your attention!

M.Eng. Bastian Wacker Section GS3 –Design and structure of pavements Bundesanstalt für Straßenwesen (BASt) Brüderstraße 53, 51427 Bergisch Gladbach, Germany

Telefon: +49 2204 43-778 wacker@bast.de, www.bast.de

Federal Highway Research Institute Bundesanstalt für Straßenwesen

Agenda

- Research update (around 10min.)
- Future data handling (around 20min)
 - Outdoor test facility duraBASt
- New measurement system on MLS30 (around 15min)
- Time for discussion and questions (around 10min)

Contact details for more questions: wacker@bast.de, 0049 2204 43-778

May 11th 2017; Speaker: bastian Wacker