UNPAVED AIRFIELDS, LOW STRENGTH CONCRETE, AND RAILROADS: AN APT UPDATE FROM ERDC

Jeremy Robinson, PE, PhD Research Civil Engineer Jeremy.Robinson@usace.army.mil

March 2024 APT Monthly Webinar Update

US Army Corps

of Engineers®

U.S. ARMY

US ARMY ERDC-HEAVY VEHICLE SIMULATOR

HVS-A (Bigfoot)

- Length: 119 ft
- Width: 16 ft
- Mass: 227,000 lbs
- Testing length: 40 ft
- Wander: 5 ft
- Load: 10,000 100,000 lbs
- Speed: 4 10 mph
- Environmental 23°F - 109°F

US ARMY ERDC-HEAVY VEHICLE SIMULATOR

HVS-T (Titan)

- Wheel load: 9,000 120,000 lbs.
- Testing length: 65 ft
- Wander: 6 ft
- Laser profiler
- Environmental chamber 20° F – 110° F
- Carriage Highway

Aircraft Rail

US ARMY ERDC-LOAD CART

- Wheel load: Up to 45,000 lbs
- C-17

HH

- C-130
- F-15
- Daily production 1,500 passes per day

PRIMARY OBJECTIVE

- Cargo aircraft may be required to operate on unpaved or aggregate-surface airfields
 - Generally designed for limited operations
 - May have relatively low-strength surface materials
 - May experience significant rutting damage
- Techniques to extend operational capabilities are needed
 - Full-depth reclamation may be one solution
 - Minimize required equipment
 - Unknown performance
- Determine performance of an aggregate surfaced LZ reconstructed with an FDR technique to support development of performance models.

ERDC

Ĩ

CONSTRUCTION PHOTOS

FDR Surface Course

- <u>C-17 Avg. Thickness</u>
 - Control \rightarrow 11.7 in.
 - AP1 → 11.3 in.
 - AP2 \rightarrow 11.9 in.
 - AP3 \rightarrow 11.6 in.
- <u>C-17 EPC Depths</u>
- AP1
 - Mid Depth \rightarrow 7.2 in.
 - Full Depth \rightarrow 11.3 in.
- AP2
 - Mid Depth \rightarrow 7.2 in.
 - Full Depth \rightarrow 12.9 in.
- AP3
 - Mid Depth \rightarrow 7.2 in.
 - Full Depth \rightarrow 10.9 in.

- <u>C-130 Avg. Thickness</u>
 - Control \rightarrow 11.7 in.
 - AP1 \rightarrow 11.3 in.
 - AP2 \rightarrow 11.4 in.
 - AP3 \rightarrow 11.1 in.
- <u>C-130 EPC Depths</u>
 AP1
 - Mid Depth \rightarrow 5.8 in.
 - Full Depth \rightarrow 11.4 in.
- AP2
 - Mid Depth \rightarrow 5.1 in.
 - Full Depth \rightarrow 11.9 in.
- AP3
 - Mid Depth \rightarrow 5.8 in.
 - Full Depth \rightarrow 10.9 in.

1. Survey Cross-sections

C-17 As-built Properties:

Pre-traffic testing

Lab Values:

AP1: Max Dry = <u>133.5 pcf</u> Optimum MC% = <u>5.9%</u>

AP2: Max Dry = <u>134.3 pcf</u> Optimum MC% = <u>6.2%</u>

AP3: Max Dry = <u>136.4 pcf</u> Optimum MC% = <u>6.0%</u>

Property	Control	AP1	AP2	AP3			
Max. Dry Density	128.1 pcf	133.5 pcf	134.3 pcf	136.4 pcf			
@	@	@	@	@			
OMC	6.3%	5.9%	6.2%	6.0%			
Wet Density (pcf)	132.5 ± 3.8	120.2 ± 3.3	118.1 ± 1.2	117.0 ± 3.2			
Dry Density (pcf)	121.5 ± 3.6	111.5 ± 3.2	109.7 ± 1.5	108.9 ± 3.3			
Nuclear Moisture Content							
(70)	9.0 ± 0.3	7.8 ± 0.1	7.7±0.5	7.4 ± 0.3			
Oven-Dried Moisture (%)	6.75	7.93	7.79	7.85			
CBR (DCP)	21 ± 0.1	38 ± 3.8	57 ± 9.4	68 ± 7.4			
Thickness (in.)	11.7 ± 0.2	11.3 ± 0.4	11.9 ± 0.1	11.6 ± 0.3			
	S	P Base Course (114 pcf @12.2	2%)				
Wet Density (pcf)	116.5 ± 0.9	118.0 ± 0.2	116.20 ± 1.5	117.1 ± 0.2			
Dry Density (pcf)	112.4 ± 1.0	113.3 ± 0.2	110.2 ± 1.9	1.9 111.9 ± 0.1			
Nuclear Moisture Content							
(%)	$\textbf{3.6}\pm\textbf{0.1}$	4.2 ± 0.1	5.5 ± 0.5	4.7 ± 0.3			
CBR (DCP)	$\textbf{35} \pm \textbf{1.7}$	30 ± 1.8	35 ± 2.1	39 ± 6.9			
Thickness (in.)	25.2 ± 0.4	25.2 ± 0.5	25.4 ± 0.4	26.4 ± 0.5			

UNCLASSIFIED

ERDC

C-130 As-built Properties:

Pre-traffic testing

Lab Values:

AP1: Max Dry = <u>133.5 pcf</u> Optimum MC% = <u>5.9%</u>

AP2: Max Dry = <u>134.3 pcf</u> Optimum MC% = <u>6.2%</u>

AP3: Max Dry = <u>136.4 pcf</u> Optimum MC% = <u>6.0%</u>

Property	Control	AP1	AP2	AP3		
Max. Dry Density	128.1 pcf	133.5 pcf	134.3 pcf	136.4 pcf		
@	@	@	@	@		
OMC	6.3%	5.9%	6.2%	6.0%		
Wet Density (pcf)	139.0 ± 2.3	121.6 ± 1.8	117.3 ± 3.2	115.0 ± 1.6		
Dry Density (pcf)	127.0 ± 1.8	111.5 ± 2.0	107.5 ± 2.2	105.1 ± 1.1		
Nuclear Moisture						
Content (%)	9.5 ± 0.4	9.1 ± 0.5	9.1 ± 0.8	9.6 ± 0.2		
Oven-Dried Moisture (%)	8.5	8.5	8.3	8.1		
CBR (DCP)	25 ± 2.4	37 ± 4.3	40 ± 3.7	51 ± 4.1		
Thickness (in.)	11.7 ± 0.2	11.3 ± .3	11.4 ± 0.2	11.1 ± 0.3		
	SP	Base Course (114 pcf @12.	2%)			
Wet Density (pcf)	$\textbf{118.1}\pm0.7$	120.4 ± 1.1	119.7 ± 0.4	117.8 ± 0.5		
Dry Density (pcf)	113.5 ± 0.6	115.3 ± 1.1	114.8 ± 0.4	113.2 ± 0.6		
Nuclear Moisture Content (%)	4.1 ± 0.2	4.4 ± 0.1	4.3 ± 0.1	4.2 ± 0.2		
CBR (DCP)	33 ± 3.6	39 ± 1.9	49 ± 0.5	41±5.7		
Thickness (in.)	25.4 ± 0.6	25.9 ± 0.5	25.2 ± 0.9	26.2 ± 0.5		

UNCLASSIFIED

ERDC

C-17 RUT DEPTH WITH TRAFFIC

C-130 RUT DEPTH WITH TRAFFIC

IMPULSE STIFFNESS WITH TRAFFIC

LWD RESPONSE WITH TRAFFIC

C-130 traffic

C-17 EARTH PRESSURE CELL DATA

Mid-Depth EPC

Full-Depth EPC

C-130 EARTH PRESSURE CELL DATA

Full-Depth EPC

INITIAL OBSERVATIONS

- Construction time limited
 - Thickness variability
 - Density concerns
- Cement content variability
- EPC data
 - Non-uniform contact area
- Initial performance data suggest this is a viable technique to extend operations in a remote location
 - Limited materials
 - Limited equipment
 - Troop construction
- Forensics ongoing / leverage response data to enhance performance models

PRIMARY OBJECTIVE

- P-8 Poseidon aircraft (military equivalent of Boeing 737-800 airframe) present a unique structural challenge for military airfield pavements.
 - High landing gear loads
 - High tire pressures
 - Relatively close tire spacing on a dual-wheel gear
- Loading conditions unlike those evaluated in historical investigations at ERDC
 - Cargo aircraft (heavy load and low tire pressure)
 - Fighter aircraft (lighter load and high tire pressure)
 - Generally evaluated for long-term (design life conditions)
- Determine performance of two relatively thin jointed plain concrete sections under simulated aircraft traffic.

APPROACH

- Leverage previously trafficked PCC test section that met currently specified flexural strength requirements.
- Reconstruct section utilizing a substandard flexural strength PCC mixture
 - Limited high quality local materials
 - Unskilled labor force
 - Substandard mixture production facilities
- Inform risk by performing a direct comparison between normal strength PCC and reduced strength PCC.

TEST SECTION LAYOUT

20 ft

20 ft

20 ft

20 ft

Plan view

10 ft

10 ft

20 ft

20 ft

20 ft

Profile view

CONSTRUCTION

P-8 TEST GEAR CONFIGURATION

- 89,000 lb total load
- 220 psi inflation pressure
- Normally-distributed wander
 pattern
- Bi-directional traffic
- Load verified with mobile aircraft scales

FAILURE CRITERIA (ROLLINGS 1988)

- First Crack
 - Number of passes required to generate the absolute first crack in 50% of the loaded slabs
 - Two slabs were loaded for this experiment
- Shattered Slab
 - Number of passes required to generate sufficient inter-connected cracks to divide a slab info four distinct pieces
 - One slab required to meet criteria
- Complete Failure
 - Number of passes required to generate sufficient inter-connected cracks to divide a slab into six or more distinct pieces

CRACK DEVELOPMENT

SUMMARY OF SELECTED FAILURE CRITERIA

8-inthick PCC								
Critoria	NEDCO							
Criteria	NSPCC	LSPUU						
First crack	400	85						
Shattered Slab	2,500	850						
Complete Failure	7,500	1,250						

11-inthick PCC									
Critoria	NERCO								
Griteria	NJPCC	LSPCC							
First crack	50,000+	500							
Shattered Slab	50,000+	45,000							
Complete Failure	50,000+	50,000+							

COMPARISON TO APE EVALUATION IN PCASE

Results of APE evaluation (LSPCC 8 in. thick).

Results of APE evaluation (NSPCC 8 in. thick).

PCASE Evaluation Inputs							PCASE Evaluation Inputs									
Layer	Material	T (in.	k-value (pci)	Effective k (pci)	F.S. (psi)	Modulus (psi)	P.R.	Layer	Material		T (in.)	k-value (pci)	Effective k (pci)	F.S. (psi)	Modulus (psi)	P.R.
PCC	PCC	7.7	NA	NA	435	3,600,000	0.15	PCC	PCC		7.4	NA	NA	765	4,600,000	0.15
Base	Unbound Crushed S	Stone 6.1	0	234	NA	NA	NA	Base	Unbound Crushe	d Stone	6.1	0	234	NA	NA	NA
Subgrade	Subgrade Cohesive fill		174	174	NA	NA	NA	Subgrade	Cohesive fill		NA	174	174	NA	NA	NA
Results		Results (passe	s) APE	Actual	% Decrease (APE from Actual)			Results (passe		passes)	APE	Actual	% Decrease (APE from Actual)			
Fi		First cra	ck 1	85	98.8			First crack		st crack	8	400	98.0			
Shatte		Shattered sl	ab 13	850	98.5		7	Shattered slat		red slab	84	2,500	96.6			
Complet		Complete failu	re 104	1,250	91.7			Comple		Complet	e failure	677	7,500	91.0		

OVERVIEW OF CURRENT PCASE MODELS (1/2)

BASED ON PICKETT ET AL. (1951)* SOLUTION FOR SEMI-INFINITE PLATE ON DENSE LIQUID FOUNDATION

Plan View

- if aggregate layer, then "effective k" procedure is used;
- if stabilized layer, then converted to equivalent thickness of PCC

* Pickett, G. (1951). Deflections, Moments, and Reactive Pressures for Concrete Pavements (No. 65). Kansas State College.

two ways:

OVERVIEW OF CURRENT PCASE MODELS (2/2)

(1 - a) 0.972

0.7561

Empirical "multiplier" for LEA

"interior" stress against load

20

XσLE

40

30

OF, JOINT LOAD TRANSFER (%)

Figure 30. Multiplier for layered elastic stresses to

account for load transfer

transfer, such that DF =

10

14

1 2

MULTIPLIER

AYERED ELASTIC STRESS

08

0.6

 $(1 - \alpha)^{0.972}$

BASED ON LAYERED ELASTIC SOLUTION WITH EMPIRICAL ADJUSTMENT FOR LOAD TRANSFER MECHANISM

Current model assumptions:

- 1. Initial "interior" response in slab is computed using layered elastic theory
- 2. Load transfer effect imposed after LEA-computed interior stress computation using a "multiplier" regression equation produced from LEA computed stresses correlated to the "Westergaard edge stress" (see Rollings 1988*)

* Rollings, R. S. (1988). Design of overlays for rigid airport pavements (No. DOT/FAA/PM-87/19 FINAL REPO). Federal Aviation Administration, Program Engineering and Maintenance Service.

х

UNCLASSIFIED

solid or multilayered elastic solutions.

COMPARISON TO FWD FIELD DATA

P-8 RIGID PAVEMENT TEST SECTION - FWD TESTS ACROSS JOINT (BETWEEN SENSOR 1 AND 2), PASS 0

Shear and moment transfer at joint

<u>Shear transfer only (with low shear stiffness value)</u>

DESIGN ASSUMPTIONS

UFC-4-860-1 (June 2022) RAILROAD DESIGN AND REHABILITATION

CROSS SECTION

Not to scale

INSTRUMENTATION PLAN VIEW

INSTRUMENTATION PROFILE

CONSTRUCTION

Quality Control: -Field CBR tests

-Nuclear density/moisture content -Grade/thickness control

CONSTRUCTION

CONSTRUCTION

ERDC

UNCLASSIFIED **CONNECT WITH US**

Jeremy Robinson

Research Civil Engineer Geotechnical and Structures Laboratory U.S. Army Engineer Research and Development Center U.S. Army Corps of Engineers Jeremy.Robinson@usace.army.mil

Scan this QR code with your phone for instant access

U.S. ARMY

